LINEAR ARRAY of IDENTICAL ELEMENTS

Controls that can be used to shape the overall

pattern of the antenna:

1. The geometrical configuration of the overall array

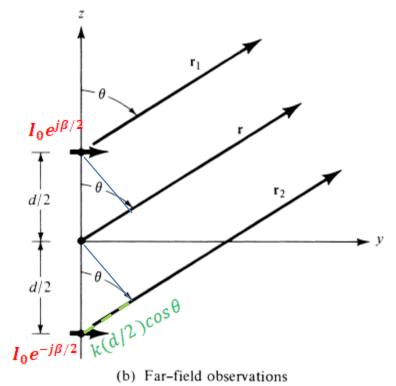
(linear, circular, rectangular, spherical, etc.)

- 2. The relative displacement between the elements
- 3. The excitation amplitude of the individual elements
- 4. The excitation phase of the individual elements
- 5. The relative pattern of the individual elements

TWO-ELEMENT ARRAY

For two infinitesimal horizontal dipoles positioned along the *z*-axis

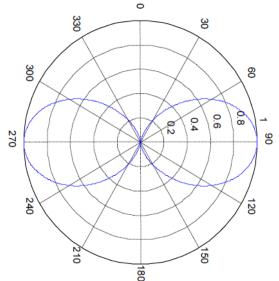
$$\mathbf{E}_{t} = \mathbf{E}_{1} + \mathbf{E}_{2} = \hat{\mathbf{a}}_{\theta} j \eta \frac{k I_{0} l}{4\pi} \left\{ \frac{e^{-j[kr_{1} - (\beta/2)]}}{r_{1}} \cos \theta_{1} + \frac{e^{-j[kr_{2} + (\beta/2)]}}{r_{2}} \cos \theta_{2} \right\}$$



$$\mathbf{E}_{t} = \mathbf{\hat{a}}_{\theta} j\eta \frac{k I_{0} l e^{-jkr}}{4\pi r} \cos \theta [e^{+j(kd\cos\theta + \beta)/2} + e^{-j(kd\cos\theta + \beta)/2}]$$
$$\mathbf{E}_{t} = \mathbf{\hat{a}}_{\theta} j\eta \frac{k I_{0} l e^{-jkr}}{4\pi r} \cos \theta \left\{ 2 \cos \left[\frac{1}{2} (kd\cos\theta + \beta) \right] \right\}$$
$$\mathbf{E}(\text{total}) = [\mathbf{E}(\text{single element at reference point})] \times [\text{array factor}]$$

Arrays of two isotropic point sources (ARRAY FACTOR PATTERN) Case 1 same amplitude and phase ($\beta=0$) and for $d=\lambda/2$ Kd/ $2=\pi/2$ (AF)n= cos[(kd/2) cos θ] = cos[($\pi/2$) cos θ]

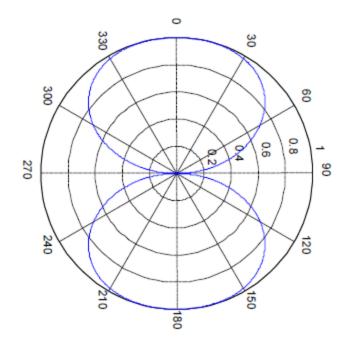
Max at
$$\frac{\pi}{2}\cos\theta_m = m\pi$$
, $m = 0,1,2,..., \theta_m = \cos^{-1}(0) = \frac{\pi}{2}, -\frac{\pi}{2}$
Nulls at $\frac{\pi}{2}\cos\theta_n = \pm(2m+1)\pi/2$ $\theta_n = \cos^{-1}(\pm 1)=0,\pi$



• Case 2 same amplitude and opposite phase (β =180) and for d= $\lambda/2$ Kd/2= $\pi/2$

$$\left| (AF)_n \right| = \cos\left(\frac{kd}{2}\cos\theta + \pi/2\right) = \sin\left(\frac{kd}{2}\cos\theta\right)$$

θ	0	10	20	30	40	50	60	70	80	90
AF _n	1	.999	.995	.978	.933	.847	.707	.5	.269	0

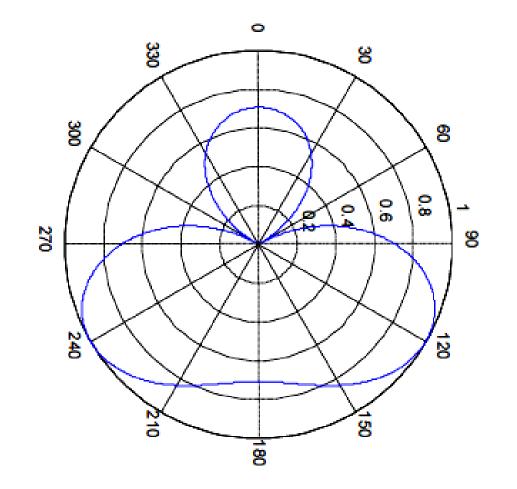


Changing phase of source currents shift to 180 change AF pattern as seen in Fig.

• Case 3 (a) same amplitude and quadrature phase ($\beta/2=\pi/4$) and for $d=\lambda/2$ Kd/2= $\pi/2$

$$\left| (AF)_n \right| = \cos\left(\frac{\pi}{2}\cos\theta + \pi/4\right)$$

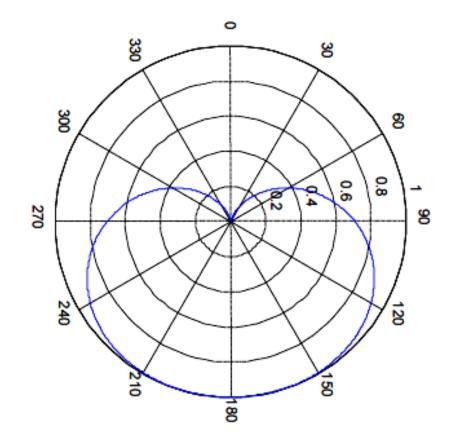
θ	0	10	20	30	40	50	60	70	80
/AF _n /	.707	.69	.637	.543	.406	.22	0	.245	.49
θ	90	100	110	120	130	140	150	160	170
/AF _n /	.707	.87	.969	1	.975	.913	.839	.77	.723
θ	180								
/AF _/	.707								



Most radiation directed toward lower half

• Case 3 (b) same amplitude and quadrature phase $(\beta/2=\pi/4)$ and for $d=\lambda/4$ Kd/2= $\pi/4$

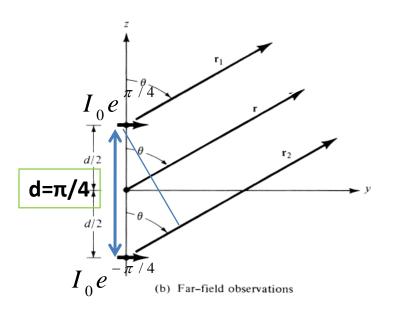
$$\left| (AF)_n \right| = \cos\left(\frac{\pi}{4}\cos\theta + \pi/4\right)$$



Can we explain max occurred at 180 and nulls at 0 in terms of phase accumulation of phases Generated by array elements at observation point, ...this illustrated at next slide.

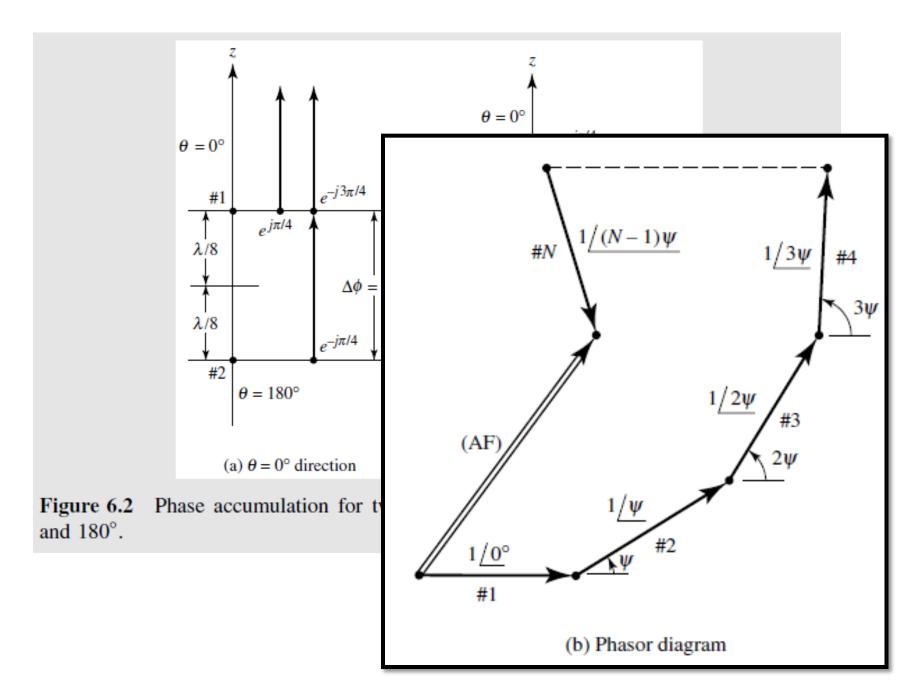
Phase accumulation:

We will notice at 0⁰ the two fields at the point #1 Are out of phase thus destructive , minima exist And at 180 the two fields are in phase at point #1 Constructive thus maxima exist



Etot = E1 + E2

take referece point at #1 element to view E2 phases as arrived at point #1 Etot = $E_o e^{-jkr1} e^{j\pi/4} + E_o e^{-jkr2} e^{-j\pi/4} = E_o e^{-jkr1} (e^{j\pi/4} + e^{-jkd\cos\theta} e^{-j\pi/4})$ $d = \lambda / 4$, kd = $\pi/2$ Etot = $E_o e^{-jkr1} (e^{j\pi/4} + e^{-j(\pi/2)\cos\theta} e^{-j\pi/4})$ $at \theta = 0 \rightarrow Etot = E_o e^{-jkr1} (e^{j\pi/4} + e^{-j(\pi/2)} e^{-j\pi/4}) = E = E_o e^{-jkr1} (e^{j\pi/4} + e^{-j3\pi/4})$ $at \theta = 180 \rightarrow Etot = E_o e^{-jkr1} (e^{j\pi/4} + e^{j(\pi/2)} e^{-j\pi/4}) = E_o e^{-jkr1} (e^{j\pi/4} + e^{j\pi/4})$



Pattern multiplication rule Total= element x AF= element(dB)+ AF(dB)

For two identical elements ,same amplitude ,phase ($\beta=0$) , and d= $\lambda/4$; Kd/2= $\pi/4$

